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The concept of midpoint percolation has recently been applied to characterize the double percolation tran-
sitions in negatively curved structures. Regular d-dimensional hypercubic lattices are investigated in the
present work using the same concept. Specifically, the site-percolation transitions at the critical thresholds are
investigated for dimensions up to d=10 by means of the Leath algorithm. It is shown that the explicit inclusion
of the boundaries provides a straightforward way to obtain critical indices, both for the bulk and surface parts.
At and above the critical dimension d=6, it is found that the percolation cluster contains only a finite number
of surface points in the infinite-size limit. This is in accordance with the expectation from studies of lattices
with negative curvature. It is also found that the number of surface points, reached by the percolation cluster
in the infinite limit, approaches 2d for large dimensions d. We also note that the size dependence in prolifera-
tion of percolating clusters for d�7 can be obtained by solely counting surface points of the midpoint cluster.
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I. INTRODUCTION

Percolation has been extensively studied over the past
several decades and remains as an active field of research. In
addition to its intrinsic scientific value and its role as one of
the basic models of critical phenomena �1�, it has contributed
to improving our general understanding of statistical physics
on various geometries �see, e.g., Ref. �2��, as well as devel-
oping efficient numerical algorithms �for a general introduc-
tion to percolation, see Ref. �3��. A percolation transition can
be manifested in many different ways: a common quantity
used in studies of the transition is the largest cluster size, but
many other quantities also give a clear signature of the tran-
sition, including the cluster size distribution �4,5� and the
ratio between the first and second largest cluster sizes �6�. At
the same time, percolation is often a question of connectivity,
so one obvious question is then how many connections can
be randomly broken before the system fails to percolate from
one side of the system to the other, or from its middle to the
boundary. From this viewpoint, a percolation phenomenon
requires a surface in order to be meaningful, just as water has
to percolate all the way through the coffee layer in a coffee
percolator. Thus, one might ask how the percolation transi-
tion is reflected on the actual surface. Specifically, the frac-
tion of surface points belonging to the percolating cluster,
C�, can be written as Ps��p− pc��s for d-dimensional sys-
tems where p is the occupation probability and pc is its criti-
cal value. This formulation is parallel to the bulk criticality,
i.e., P��p− pc�� where P is the fraction of bulk points be-
longing to C�. The exponent �s is known to be 4/9 from
conformal invariance for d=2 �7�, and the mean-field value,
valid for d�6, is �s=3 /2 �8�. For d=3, Monte Carlo simu-
lations have estimated �s /�=0.9753�3� where � describes
the correlation length as ���p− pc�−� �9�.

The midpoint percolation turns out to be a useful concept
to understand percolation transitions in curved structures

�10�. This earlier work focused on lattices with negative
Gaussian curvatures and it was found that the percolation for
such lattices contains two critical thresholds: the first one at
which the number of points reached on the surface from the
midpoint becomes finite in the limit of the large system size,
and the second one, where this number becomes a finite frac-
tion of the surface points. The reason for the occurrence of
two percolation thresholds appears to be intimately related to
the size of the surface: when the surface-volume ratio is fi-
nite, as for the negatively curved lattices, there appear two
thresholds. These two separate thresholds coalesce into a
single one if the surface-volume ratio vanishes. In a
d-dimensional system with size N, this ratio is to leading
order N−1/d. Thus from this viewpoint, a negatively curved
structure with a constant surface-volume ratio is infinite-
dimensional.

Let b be the average number of surface points reached
from the midpoint in a d-dimensional hypercubic lattice hav-
ing a linear size L. The quantity b has a size dependence of
the form b�L� at criticality. The exponent � can be related
to the bulk exponent � and the surface exponent �s as fol-
lows:

� = �d − 1� − �� + �s�/� . �1�

This follows since the probability that the percolation cluster
at criticality contains the midpoint, in the large-L limit, is
independent of how many surface points it contains. Thus,
the fraction between the number of surface points and the
total number of points of the percolating cluster becomes
L� /Ld−1�L−�/�L−�s/�, where L−�s/� is proportional to Ps and
L−�/� is proportional to P �see Sec. III A below�. Conse-
quently, the exact value �s=4 /9 for d=2 implies that �
=9 /16=0.5625�11�. A second case where the exponent b can
be obtained analytically is d=6, for which Eq. �1� gives �
=0 with the known values for the exponents �8�. This implies
that only a finite number of points on the surface are reached
from the midpoint at criticality. A third example is the Cay-
ley tree with coordination number z, which is a negatively
curved lattice and hence can be regarded as corresponding to*Corresponding author; garuda@tp.umu.se
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d=�. This structure has the lower and upper critical thresh-
olds at pc1=1 / �z−1� and pc2=1, respectively �10�, and there
exist indefinitely many percolating clusters between these
two thresholds �12�. One can calculate the average number of
surface points reached from the midpoint at the lower thresh-
old pc1 which gives b=z / �z−1�. Since there is no size de-
pendence, this means that �=0. The implication is that one
only reaches a finite number of surface points from the mid-
point for all dimensions d�6.

One might also imagine a gradual reduction in the mag-
nitude of the curvature until the structure becomes an ordi-
nary d-dimensional lattice. Since both of the thresholds coa-
lesce for a regular lattice, pc= pc1= pc2, we are left with the
following possibilities at criticality: b can be either a positive
constant as it is for pc1 in case of the Cayley tree, or an
increasing function of L as it is at pc2. In this work, we find
that the divergent behavior of b indeed becomes weaker as d
increases, and reaches the limit of b=const. at the upper
critical dimension, d=6 in accordance with the expectation
above. We also show that the surface observable, b, provides
us with a direct way of quantifying the percolation transition
in general dimensions. In Sec. II, we describe the Leath al-
gorithm used throughout this work. In Sec. III, we analyze
the numerical results and discuss the critical behavior. Fi-
nally, Sec. IV gives a summary.

II. LEATH ALGORITHM

The measurement of b is well suited for the Leath algo-
rithm �4,5�, which is basically a burning algorithm to create
a cluster starting from the midpoint. The collection of burned
sites at each realization will be called a midpoint cluster, and
abbreviated as Cm. It suffices to count the number of surface
points which are contained in Cm. This makes the algorithm
in the present case easier to use than in most earlier works
since we need no explicit treatment to exclude the boundary.
Let us consider a d-dimensional hypercubic lattice having
the length of each edge as L=2n with an integer n. For con-
venience, we will impose the periodic boundary condition in
this lattice. Each point will be assigned a coordinate with d
components. Fixing one of the components, one gets a �d
−1�-dimensional surface across the system which serves as
our effective boundary layer: we do not allow the midpoint
cluster to grow beyond this layer. In this way, we effectively
get an odd number of lattice sites in each direction which
uniquely defines the midpoint.

As for the actual implementation of the burning algo-
rithm, one may choose between two options: depth-first and
breadth-first methods. The former can be easily made using
recursion as follows.

�1� Assign the “boundary” state to the points constituting
the boundary layers, and set all the other points as “unexam-
ined.”

�2� Set the midpoint as “occupied.”
�3� For each of the neighboring unexamined points of this

occupied one, �a� with probability p, mark the neighbor as
occupied and repeat Step 3 with respect to this newly occu-
pied point. �b� With probability 1− p, mark the neighbor as
“stopped.”

The midpoint cluster consists of the resulting occupied
points and its growth will stop when it is completely sur-
rounded by points marked as either stopped or boundary.

In spite of the ease of implementation, this method re-
quires that the program remember the state of every lattice
point, which severely restricts accessible system sizes. For
this reason, the other option, i.e., the breadth-first method is
better suited for the present context. The program is then
only required to remember the outmost shell of Cm. This can
be implemented in the following way.

�1� Prepare a queue and an array, both initialized as
empty. The queue stores actively burning points with its pos-
sible directions to proceed, while the array stores points
which cannot be burned again, i.e., either “stopped” or cur-
rently “active.”

�2� Add the midpoint to the queue, with every direction
allowed, and record the midpoint as well as its state as active
in the array.

�3� Retrieve an element from the queue. The queue be-
comes shortened by one in length on the retrieval. Also de-
lete this active point from the array.

�4� For every possible neighbor from the retrieved point,
make a search in the array unless it belongs to the boundary
layers.

�a� If it is absent, �i� with probability p, add this to the
array as active. Also add this to the queue with preventing it
from propagating back. �ii� With probability 1− p, add this to
the array as “stopped.”

�b� If it is found as active, tell the corresponding element
in the queue not to propagate toward this direction.

�c� If it is found as stopped, this neighbor is not pen-
etrable. Do nothing.

�5� Go to Step 3.
Note that we need not predefine the connection structure

since one can easily compute neighboring coordinates from a
given point in regular structures. As recommended in earlier
works �13–15�, we have employed hashing �16� in Step 4,
but not included the data blocking method �13� nor the gen-
eration of a random number from each site index �14,17�. We
choose the burning probability p from the previously known
site-percolation thresholds, and the values used are tabulated
in Table. I. Since pc decreases with d, the actually generated
cluster is much smaller than the effective lattice size in a
high dimension. We also note how efficiently the Leath al-
gorithm performs with respect to memory usage. For ex-
ample, our implementation with 2 200 megabytes memory
can readily simulate a case where boundaries are away from
the midpoint by 31 lattice spacings in a six-dimensional hy-
percube around the known threshold, pc�0.109017 �15�. If
we loaded every lattice point on memory, the memory re-
quirement should roughly amount to 236 integers, a signifi-
cant portion of which would be simply redundant since the
burning probability is low. The depth-first method has been
used in this work only for simulating small system sizes, as
well as performance checks of the breadth-first method.

III. RESULTS

Using the above algorithms, we have generated more than
106 samples for each L and d obtainable within our re-
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sources. Our numerical results are presented in Figs. 1 and 2
and Table I. After recording the number of surface points
reached by each midpoint cluster, we carry out the following
analysis.

A. Bulk criticality

Let us consider a lattice at an occupation probability p,
where one or more clusters are distributed over the system.
Among them, our algorithm always picks only one cluster,
Cm, the midpoint cluster. When p reaches pc, a percolation
cluster C� will appear among many clusters in the system. It
may or may not contain the midpoint. In case that the mid-

TABLE I. Occupation probabilities used in this work and values of exponents obtained in this work in
comparison to previously known results. For d=2 and d�6, the known values of � /� and �s /� are exact.
The last column is for a consistency check of our analysis where the sum should be d−1 according to Eq. �1�.
The discrepancy at d=7 signals the proliferation of percolating clusters, as explained in the text.

d
pc

�known�
� /�
�X�

� /�
�known�

�
�Y�

�s /�
�Z�

�s /�
�known� X+Y +Z

2 0.5927460a 0.1044�2� 5/48e 0.563�1� 0.33345�10� 1/3m 1.001�1�
3 0.3116081b 0.478�2� 0.474�6�f 0.554�7� 0.974�2� 0.970�6�f 2.01�1�

0.477�4�g

0.4770�2�h

0.481�1�i 0.975�4�i

0.9754�4�n

0.4774�1�j 0.9753�3�j

4 0.196889c 0.945�5� 0.9528�14�b 0.410�1� 1.64�2� 3.00�2�
0.953�7�c

5 0.1407966d 1.5�1� 1.462�16�k 0.11�7� 2.408�5� 4.0�2�
1.46�1�c

6 0.109017d 1.9�1� 2l 0.06�2� 2.8�3� 3o 4.8�4�
7 0.0889511d 2.0�1� 2l 0.06�8� 3.08�1� 3o 5.1�2�

aReference �18�.
bReference �19�.
cReference �14�.
dReference �15�.
eReference �20�.
fReference �21�.
gReference �13�.
hReference �22�.

iReference �23�.
jReference �9�.
kReference �24�.
lReference �25�.
mReference �7�.
nReference �26�.
oReference �8�.
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FIG. 1. �Color online� Data obtained by the Leath algorithm
from d=2 to 7. �a� The average number of surface points, b,
reached by the midpoint cluster. �b� The average probability for the
midpoint cluster to reach the boundary, which is identified with P,
the density of the percolating cluster. �c� The average number of
surface points contained in a percolating midpoint cluster, bp, for
different sizes L. Error bars are shown in all the figures, but usually
comparable to the symbol sizes.
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FIG. 2. �Color online� �a� Measurements of b /d for dimensions
from d=7 to 10, where b is fitted by Eq. �5�. The correction expo-
nents are estimated as ��d=7�=0.5�1�, ��d=8�=0.8�2�, ��d=9�
=0.7�4�, and ��d=10��1. �b� The limiting number of surface
points, b�L→��, divided by d. �c� The number of surface points
reached, when percolation along the surface is prohibited, as a func-
tion of 1 / �d−6�. Linear extrapolation suggests that b�� �d→���1.
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point happens to be contained in C�, our algorithm shows
that the generated cluster, Cm, actually percolates the system,
i.e., reaches the boundary. If C� does not contain the mid-
point, on the other hand, our algorithm picks up only a non-
percolating cluster with no surface points. In short, the fre-
quency of touching the boundary in our algorithm simply
means the probability for a percolating cluster C� to contain
the midpoint. Moreover, since the midpoint is one of the
lattice points in the bulk, the probability that it is contained
within the percolating cluster C� is the same as for any other
bulk point. This probability is given by the density of lattice
points in C� and consequently has the size scaling P
�Ldf−d=L−�/� where df is the fractal dimension of the per-
colating cluster. This means that one can estimate � /� by
counting how frequently Cm with a given size L reaches the
boundary since when it touches, it does belong to the perco-
lating cluster with certainty and vice versa. We generally
expect a size scaling of an observable Q at criticality as

Q = AL	�1 + BL−� + ¯� + C , �2�

where A, B, and C are L-independent constants and �
0
characterizes the correction to the leading scaling behavior.
In case of P, we know that 	=−� /�. Furthermore, since
P�L→�� in fact vanishes, we can safely set C as zero in this
case. Therefore, one arrives at

PL�/� � A + B�L−� �3�

with B��AB. Since plotting PL�/� against L−� should give a
straight line for correct exponents, we can determine the ex-
ponents from the goodness of fit. For d=2, for example, we
get � /�=0.1044�2� together with �=1.4�2�, when choosing
the chi-square significance level as �=10%, and this result
agrees well with the exact value, � /�=5 /48�0.1042 �see
Ref. �20� and references therein�. We have employed this
method for lattices of dimension 2�d�7 and the results are
presented in Table I �Fig. 1�b��. Whenever the data fail to
exceed the chi-square critical value �CV� for �=10%, we
remove the smallest system size and then repeat the proce-
dure. As seen in Table I, the resolution of our data tends to
deteriorate somewhat with increasing dimension �see e.g.,
the values for d=5�. This is presumably caused by the fact
that the correction term in Eq. �3� is not enough to absorb all
the deviations from the leading behavior when L is too small.
Since the deviations increase with the dimension, we are
restricted to using fewer sizes of L at a larger dimension. To
some extent, the deviation is also caused by the fact that the
number of available data sets decreases with large � /�, mak-
ing the statistics worse. Finally we note that the deviation of
� /� from the predicted values in case of the upper critical
dimension, d=6, could possibly also be attributed to the
logarithmic correction �27�.

B. Surface criticality

As for the bulk critical exponent �, we use the surface
data in order to obtain �. This time the observable is b, the
number of surface points reached by the midpoint cluster Cm
�Fig. 1�a��. As discussed in Sec. I, the constant C is expected
to be a nonvanishing constant for d�6 since it corresponds

to the number of surface points reached in the infinite-size
limit. Thus, according to Eq. �2�, we assume the size scaling
as

�b − C�L−� � A + B�L−�, �4�

which is of the same form as Eq. �3� apart from the addi-
tional constant, C. As a practical data-fitting procedure, we
find the smallest C that gives a sufficiently high CV to pass
�=10%. This procedure yields �=0.563�1� for d=2, which
is entirely consistent with the exact result �=9 /16=0.5625.
The result for 2�d�7 are given in Table I. One way to
obtain �s /� is then to use Eq. �1� and the determined values
for � /� and �. However, we will here use this connection as
a consistency check as shown in the last column in Table I.
Instead, we use the alternative method of counting the aver-
age number of surface points reached by the midpoint cluster
which actually do reach the boundary. This means that we
only sample over the cases when Cm does percolate �Fig.
1�c��. For d=2, this gives �s /�=0.33345�10�, which is close
to the exact value, 1/3. Table I shows �s /� estimated in this
way for 2�d�7. To our knowledge, the values for four and
five dimensions are reported for the first time in this work. It
is notable that for d=6 both �s /� and � /� deviate somewhat
from the theoretical predictions but are still inside the esti-
mated bounds. Nonetheless, the consistency check � /�
+�s /�+�=d−1 is well born out for 2�d�6, verifying the
internal consistency of our method and analysis �the last col-
umn in Table I�. We stress that the three exponents � /�,
�s /�, and � in the present work are all obtained by just
counting the number of surface points reached by the mid-
point percolation cluster at criticality.

The case of d=7 in Table I is of special interest because
� /�+�s /�+�=5.1�2�
d−1=6. This means that the relation
L� /Ld−1�L−�/�L−�s/� breaks down in this case. The reason is
that the percolating cluster at criticality is no longer unique
for d�7 �28�. This is usually referred to as the breakdown of
the hyperscaling relation �3�. Suppose that the number of
percolation cluster scales as Lx, then the relation changes to
L� /Ld−1�L−xL−�/�L−�s/� so that the consistency relation be-
comes � /�+�s /�+�=d−1−x. The reason is that the chance
that the midpoint belongs to one of the percolating clusters is
still given by Ldf−d, but now L−�/� gives the probability that a
lattice point belongs to any percolating cluster. Conse-
quently, the chance for the midpoint to be contained in one of
percolating clusters is L−xL−�/� from which � /�+�s /�+�
=d−1−x follows. The number of percolating clusters is ex-
pected to scale as Ld−6 for d�6 �28�. The consistency rela-
tion for d
6 then becomes � /�+�s /�+�=5. As seen in
Table I, this relation is born out by our results for d=7. We
also observe that, provided that the mean-field values hold
for the critical indices � /� and �s /� for d�6, and in addi-
tion the critical index �=0 for d�6 �as implied by our re-
sults�, then it follows from the consistency relation that x
=d−6. Conversely, if we take the growth of the percolation
clusters, Ld−6, for granted, then we obtain �=0 from the con-
sistency relation. This also implies that the fractal dimension
of a single percolating cluster becomes df =d−x−� /�=4 for
d�6 �28�. It is interesting to note that the exponent x, de-
scribing how the number of percolating clusters grows with a
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lattice size at criticality for d�6 can be obtained by just
counting the number of surface points reached by the mid-
point cluster.

Next we assume that the inferred result �=0 for d�6 is
correct. Then Eq. �4� reduces to

b � b� + B�L−�, �5�

where b��A+C. This says that b�L→�� approaches a con-
stant denoted as b�. We have estimated this constant up to
d=10, using the critical probabilities reported in Ref. �15�
�Fig. 2�a��. The correction exponent � shows a tendency to
increase as d grows so that the convergence to b� becomes
more rapid. Figure 2�b� suggests that the limiting value of b�

for large d could possibly be 2d. In order to investigate this
further, we note that b��L�= pcb�L−1� corresponds to the
number of points reached on the surface provided that per-
colation along the surface is prohibited. In Fig. 2�c�, we have
plotted b�� �b��L→�� against 1 / �d−6�, where we assume
that d−6 is a fundamental parameter in the problem. Linear
extrapolation suggests that the limiting value for d→� is
close to b�� =1. Since pc approaches 1 / �2d−1� for large d,
this result also implies that b��2d, even though the preci-
sion is not sufficient to make any firm conclusion. Note that
2d is just the number of faces in a d-dimensional hypercube,
so that one can say that Cm reaches every face of the surface
in one point on the average. However, any individual real-
ization of the midpoint percolation cluster will of course
reach a variety of points on each face and some not at all.

In a previous study, it was shown that the cluster grows on
the average by one site per step for large enough dimensions,
suggesting a connection to the self-avoiding random walk
�SAW� �15�: A cluster that grows with precisely one site per
step traces out a SAW. From this perspective, it is interesting
to note that our quantity b�� corresponds to the average num-
ber of points that a SAW walker starting from the midpoint
reaches on the surface. Since a SAW walker always has a
finite chance of getting stuck in any dimension d
�, this
means that b�� 
1 for SAW, whereas we have found b�� 
1
for the midpoint percolation cluster at criticality. However,
the chance of getting stuck vanishes for the SAW walker in
the limit of d→�, which means that b�� =1 in this limit. This

agrees with our corresponding result for percolation, as well
as with the result in Ref. �15�, suggesting some similar fea-
ture between an unhindered SAW and the midpoint cluster at
criticality in the limit of large d. However, the cluster created
by SAW and the midpoint percolation cluster at criticality
have quite different structures in all dimensions including the
limit of d→� since the SAW cluster has fractal dimension
df =2 for high d whereas that of the midpoint percolation
cluster is df =4 as verified in the present paper. One may note
that if one only takes the backbone of the percolating cluster,
the backbone indeed has a fractal dimension df

�b�=2 for d

6 �3�, which strengthens the similarity.

IV. SUMMARY

We studied the percolation transitions in dimensions from
d=2 to 10 by the Leath algorithm. In particular, it was shown
that one can obtain various critical properties by just count-
ing the number of points reached on the surface from the
midpoint. To this end, we checked that our midpoint perco-
lation yielded consistent results with known ones, and esti-
mated exponents characterizing the surface criticality as well
as the bulk one. We found that the divergent behavior of b
becomes weaker in higher dimensions as anticipated from
the Cayley tree, so that it scales as L9/16 for d=2 but con-
verges to a constant in the infinite-size limit for d�6. We
also confirmed that the percolation cluster ceases to be
unique for d�6. In addition, our results suggests that the
number of surface points reached approaches the value of 2d
in the limit of large d. Provided that percolation along the
surface excluded, this corresponds to the simple result that
precisely one surface point is reached at criticality.
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